首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   113篇
  免费   14篇
  国内免费   64篇
环境安全   191篇
  2023年   4篇
  2022年   14篇
  2021年   12篇
  2020年   11篇
  2019年   3篇
  2018年   8篇
  2017年   6篇
  2016年   7篇
  2015年   12篇
  2014年   28篇
  2013年   8篇
  2012年   10篇
  2011年   7篇
  2010年   5篇
  2009年   12篇
  2008年   2篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  2001年   6篇
  2000年   1篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   1篇
  1986年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
71.
The thermally activated persulfate (PS) degradation of carbon tetrachloride (CT) in the presence of formic acid (FA) was investigated. The results indicated that CT degradation followed a zero order kinetic model, and CO 2 · was responsible for the degradation of CT confirmed by radical scavenger tests. CT degradation rate increased with increasing PS or FA dosage, and the initial CT had no effect on CT degradation rate. However, the initial solution pH had effect on the degradation of CT, and the best CT degradation occurred at initial pH 6. Cl had a negative effect on CT degradation, and high concentration of Cl displayed much strong inhibition. Ten mmol·L–1HCO 3 promoted CT degradation, while 100 mmol·L1NO 3 inhibited the degradation of CT, but SO 4 2– promoted CT degradation in the presence of FA. The measured Cl–concentration released into solution along with CT degradation was 75.8% of the total theoretical dechlorination yield, but no chlorinated intermediates were detected. The split of C-Cl was proposed as the possible reaction pathways in CT degradation. In conclusion, this study strongly demonstrated that the thermally activated PS system in the presence of FA is a promising technique in in situ chemical oxidation (ISCO) remediation for CT contaminated site.  相似文献   
72.
Trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) in the presence of citric acid (CA) in aqueous solution was investigated. The results demonstrated that the presence of CA enhanced TCE degradation significantly by increasing the concentration of soluble Fe(III) and promoting H2O2 generation. The generation of HO? and O2-? in both the CP/Fe(III) and CP/Fe(III)/CA systems was confirmed with chemical probes. The results of radical scavenging tests showed that TCE degradation was due predominantly to direct oxidation by HO?, while O2-? strengthened the generation of HO? by promoting Fe(III) transformation in the CP/Fe(III)/CA system. Acidic pH conditions were favorable for TCE degradation, and the TCE degradation rate decreased with increasing pH. The presence of Cl-, HCO3-, and humic acid (HA) inhibited TCE degradation to different extents for the CP/Fe(III)/CA system. Analysis of Cl- production suggested that TCE degradation in the CP/Fe(III)/CA system occurred through a dechlorination process. In summary, this study provided detailed information for the application of CA-enhanced Fe(III)-activated calcium peroxide for treating TCE contaminated groundwater.  相似文献   
73.
Pharmaceuticals and personal care products (PPCPs) have been regarded as an emerging problem in the surface water environment in the past few decades. In China, although related studies were initiated several years ago, an increasing number of studies on this topic have been conducted in recent years. These studies have expanded knowledge of their occurrence, behavior and associated risk in the surface water environment in China. This review compiles the most recent literature related to the studies of PPCPs in the surface water environment in China. It includes PPCP occurrence in surface water and sediments, their geographical distribution, and outcomes of the associated risk assessment. It shows that antibiotics have received much more attention in both surface water and sediments than other PPCPs. Compared to other countries; most antibiotics in the collected sediments in China showed higher contamination levels. Many more study areas have been covered in recent years; however, attention has been given to only specific areas. Environmental risk assessment based on risk quotients indicated that sulfamethoxazole presents the most significant environmental risk to relevant aquatic organisms; followed by ofloxacin, ciprofloxacin, enrofloxacin, 17α-ethynylestradiol, ibuprofen and diclofenac. Despite limited research on the environmental risk assessment of PPCPs in sediments, higher risks posed by PPCPs in the sediments rather than surface water were identified highlighting the need for further risk assessment of PPCPs in sediment samples.
  相似文献   
74.
通过一起液化石油气汽车罐车的爆炸事故,分析出装卸软管在卸车过程中破裂是爆炸事故的主因,提出了有效预防措施。同时对汽车罐车的安全运行在使用管理方面提出了建议。  相似文献   
75.
In this study two types of biological contact oxidation processes (BCOP), a step-feed (SBCOP) unit and an inter-recycle (IBCOP) unit, were designed to investigate the treatment of heavily polluted river water. The Daqing River, which is the largest pollutant contributor to the Dianchi Lake, one of the most eutrophic freshwater lakes in China, was taken for the case study. It was found that the SBCOP had higher adaptability and better performance in the reduction of COD, TN, and TP, which made it applicable for the treatment of polluted river water entering the Dianchi Lake. Nitrification rate was observed to be greatly affected by the influent temperature. During each season, the nitrification in the SBCOP was higher than that in the IBCOP. TN removal efficiency in the SBCOP was higher than that in the IBCOP during the winter and spring but poorer during the summer, possibly due to the inhibition of denitrification by higher dissolved oxygen level in the summer. Moreover, symbiotic algaebacteria growth may be conducive to the removal of pollutants.  相似文献   
76.
• Bi2O3 cannot directly activate PMS. • Bi2O3 loading increased the specific surface area and conductivity of CoOOH. • Larger specific surface area provided more active sites for PMS activation. • Faster electron transfer rate promoted the generation of reactive oxygen species. 1O2 was identified as dominant ROS in the CoOOH@Bi2O3/PMS system. Cobalt oxyhydroxide (CoOOH) has been turned out to be a high-efficiency catalyst for peroxymonosulfate (PMS) activation. In this study, CoOOH was loaded on bismuth oxide (Bi2O3) using a facile chemical precipitation process to improve its catalytic activity and stability. The result showed that the catalytic performance on the 2,4-dichlorophenol (2,4-DCP) degradation was significantly enhanced with only 11 wt% Bi2O3 loading. The degradation rate in the CoOOH@Bi2O3/PMS system (0.2011 min1) was nearly 6.0 times higher than that in the CoOOH/PMS system (0.0337 min1). Furthermore, CoOOH@Bi2O3 displayed better stability with less Co ions leaching (16.4% lower than CoOOH) in the PMS system. These phenomena were attributed to the Bi2O3 loading which significantly increased the conductivity and specific surface area of the CoOOH@Bi2O3 composite. Faster electron transfer facilitated the redox reaction of Co (III) / Co (II) and thus was more favorable for reactive oxygen species (ROS) generation. Meanwhile, larger specific surface area furnished more active sites for PMS activation. More importantly, there were both non-radical (1O2) and radicals (SO4•, O2•, and OH•) in the CoOOH@Bi2O3/PMS system and 1O2 was the dominant one. In general, this study provided a simple and practical strategy to enhance the catalytic activity and stability of cobalt oxyhydroxide in the PMS system.  相似文献   
77.
A spent fluid catalytic cracking (FCC) catalyst containing lanthanum (La) was used as a novel adsorbent for phosphorus (P) in simulated wastewater. The experiments were conducted in a batch system to optimize the operation variables, including pH, calcination temperature, shaking time, solid-liquid ratio, and reaction temperature under three initial P-concentrations (C0 = 0.5, 1.0, and 5.0 mg/L). Orthogonal analysis was used to determine that the initial P-concentration was the most important parameter for P removal. The P-removal rate exceeded 99% and the spent FCC catalyst was more suitable for use in low P-concentration wastewater (C0 <5.0 mg/L). Isotherms, thermodynamics and dynamics of adsorption are used to analyze the mechanism of phosphorus removal. The results show that the adsorption is an endothermic reaction with high affinity and poor reversibility, which indicates a low risk of second releasing of phosphate. Moreover, chemical and physical adsorption coexist in this adsorption process with LaPO4 and KH2PO4 formed on the spent FCC catalyst as the adsorption product. These results demonstrate that the spent FCC catalyst containing La is a potential adsorbent for P-removal from wastewater, which allows recycling of the spent FCC catalyst to improve the quality of water body.
  相似文献   
78.
染色废水吸附混凝效应研究   总被引:27,自引:0,他引:27  
用自制的酸性膨润土用无机混凝剂Al2(SO4)3联用处理含酸性红3B,弱酸橙GS和弱酸艳绿5G等染料的合成废水,以CDOCR去除率和脱色率来表征吸附的处理效果,结果表明,酸性膨润土和酸性膨润土-硫酸铝两种吸收混凝剂的废水处理效果无明显差异,其效率与染料种类有关,处理含5G绿废水的效果优于含GS橙和3B红废水。  相似文献   
79.
The objective of this study was to investigate the impact of exogenous urea nitrogen on ammonia-oxidizing bacteria (AOB) and other soil bacterial communities in soil bioaugmented for simazine remediation. The previously isolated simazine-degrading Arthrobacter sp. strain SD1 was used to degrade the herbicide. The effect of urea on the simazine degradation capacity of the soil bioaugmented with Arthrobacter strain SD1 was assessed using quantitative PCR targeting the s-triazine-degrading trzN and atzC genes. Structures of bacterial and AOB communities were characterized using terminal restriction fragment length polymorphism. Urea fertilizer could affect simazine biodegradation and decreased the proportion of its trzN and atzC genes in soil augmented with Arthrobacter strain SD1. Bioaugmentation process could significantly alter the structures of both bacterial and AOB communities, which were strongly affected by urea amendment, depending on the dosage. This study could provide some new insights towards s-triazine bioremediation and microbial ecology in a bioaugmented system. However, further studies are necessary in order to elucidate the impact of different types and levels of nitrogen sources on s-triazine-degraders and bacterial and AOB communities in bioaugmented soil.  相似文献   
80.
VA菌根对土壤中DEHP降解的影响   总被引:11,自引:1,他引:11       下载免费PDF全文
以豇豆为供试植物,分别接种泡囊丛枝菌根(VAM)真菌Acaulospora lavis(光壁无梗球囊霉,菌号:34)和Glomus caledonium(苏格兰球囊霉,菌号:90036),研究VA菌根对菌根际(A)、菌丝际(B)和常规土(C)土层中不同浓度DEHP(4、20、100mg/kg)降解的影响。试验持续60d。结果表明:接种VAM真菌促进了DEHP在A、B、C土层中的降解,尤其在B层的降解,说明菌丝在DEHP降解和转移过程中起了重要作用。其中34号菌接种效果较为显著,A、B土层中的DEHP残留浓度分别比不接种最大下降25.1%和10.1%。受VAM直接影响的A、B土层中细菌、真菌、放线菌数量呈下降趋势,而在C层中呈增加趋势,A、B、C土层中土壤中性磷酸酶活性也呈现出同样变化趋势。微生物数量和中性磷酸酶活性的下降可能会影响VA菌根在DEHP降解中的作用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号